
Partially Implicit Motion of a Sharp Interface in Navier-Stokes Flow

J. Thomas Beale

Department of Mathematics, Duke University, Box 90320, Durham, North Carolina 27708, U.S.A.

Abstract

We develop a numerical method for the coupled motion of Navier-Stokes flow with an elastic
interface of zero thickness which exerts tension and bending forces on the fluid. The interface
motion is made partially implicit by approximating a backward Euler step in the high wavenumbers
as in the small scale decomposition method of Hou, Lowengrub and Shelley. This modified step
is combined with the method of [J. T. Beale, A. T. Layton, A velocity decomposition approach
for moving interfaces in viscous fluids, J. Comput. Phys. 228 (2009) 3358–67]; the fluid velocity
is found by computing the Stokes velocity and a more regular remainder. The resulting scheme is
second order in space and first order in time; it can be made second order in time by extrapolation.
The discontinuities in the pressure and velocity gradient are preserved. The partially implicit
method allows much larger time steps than an explicit method with negligible added effort. The
formulas in the Fourier transform for the implicit approximation in high wavenumbers are similar
to those derived in [T. Y. Hou, Z. Shi, An efficient semi-implicit immersed boundary method for
the Navier-Stokes equations, J. Comput. Phys. 227 (2008) 9138–69] in a different context.

Keywords: fluid-structure interaction, immersed boundary, immersed interface, Navier-Stokes
flow, implicit methods, small scale decomposition
2000 MSC: 76D05, 65N06, 74F10, 35R05

1. Introduction

We are concerned with models for the coupled motion of a viscous, incompressible fluid and
an immersed material interface which imposes an elastic force on the fluid in response to its
deformation. We assume the fluid is described by the Navier-Stokes equations (NSE) and the
interface is a closed curve with zero thickness. There has been extensive development of numerical
methods in which the fluid pressure and velocity are computed on a rectangular grid and the
interface is represented separately by Lagrangian variables and moved with the fluid velocity.
The most widely used method is the immersed boundary method (IBM) introduced by C. Peskin
[25, 7, 22, 23, 26, 32] in which the interfacial force is conveyed to the fluid by a carefully designed
discrete delta function on the grid points. In another class of methods, including the immersed
interface method (IIM) the interfacial force is incorporated by imposing jump conditions directly
on the fluid variables [18, 16, 17, 19, 30, 35].

Email address: beale@math.duke.edu (J. Thomas Beale)
URL: www.math.duke.edu/faculty/beale (J. Thomas Beale)

Preprint submitted to Journal of Computational Physics December 8, 2011

It has long been recognized that the time step in such methods can be severely limited if the
motion of the interface is explicit. Considerable effort has led to the design of implicit and semi-
implicit methods to alleviate the difficulty [4, 15, 22, 23, 24, 32]. Another approach, however, is to
identify the source of greatest stiffness arising from small scales or large wavenumbers in the inter-
face motion and to modify the velocity to approximate an implicit step in the high wavenumbers,
thereby avoiding the iterative solves needed for a fully implicit method. This was the approach
introduced in [8] for certain interface models. It has been successfully used for elastic interfaces in
Stokes flow [9, 13, 29, 31, 33, 14]. This approach was also applied in [10] for NSE flow using the
IBM. In the present work we develop a partially implicit time-stepping procedure for interfaces in
NSE flow appropriate for sharp interface methods such as the IIM. As in [3] we decompose the
Navier-Stokes velocity as the sum of the Stokes velocity and a remainder which is less singular
at the interface. The resulting method is only slightly more involved at each time step than an
explicit method; the time step can be much larger than for an explicit method but less than that
of an implicit method. Such a method should be useful when the flow is not far from the Stokes
regime but the full NSE evolution is desired.

We assume the fluid flow is two-dimensional and periodic on a rectangular domain Ω, and
the interface is a closed curve Γ inside Ω. We write the interface as a function X = X(α, t)
of a material coordinate α, −A ≤ α ≤ A. We denote the unit tangent and normal vectors by
t = (∂X/∂α)/|∂X/∂α| and n, and the current arclength by s, so that sα = ∂s/∂α = |Xα|; our
notation is slightly different from that used with the IBM. We suppose the fluid has constant
density on both sides of Γ. The Navier-Stokes equations in nondimensionalized form are

∂u
∂t

+ u · ∇u +∇p = ν∇2u + F + G (1)

∇ · u = 0 (2)

where u is the fluid velocity, p is the pressure, ν is the kinematic viscosity. Here G is a background
force and F is the interfacial force, supported on Γ; that is, F = fδΓ, where the density f is a
function on Γ, so that for a test function w(x) on Ω∫

Ω
F(x)w(x) dx =

∫
Γ

f(x(s), t)w(x(s)) ds =
∫ A

−A
f(X(α, t), t)w(X(α, t))sα dα (3)

We consider forces due to stretching and bending, f = f (s) + f (b), with f (s) a function only of
sα. As in [25] we suppose f (s) is determined by an energy density E(sα), with the form f (s) =
(∂/∂s)(E ′(sα)t). The most familiar case is E(σ) = (γ0/2)(σ − 1)2, so that

f (s)(α, t) = γ0∂s ((sα − 1)t)) , (4)

a linear response to the stretching of the material from its natural length. We consider a bending
force of the form

f (b) = −cb∂4
sX = −cb∂3

st . (5)

It will be important that f always has the form f = ∂sΦ. The interfacial force can be expressed in
jump conditions for the pressure and velocity gradient (see e.g. [17, 19, 26]),

[p] = f · n,
[
∂p

∂n

]
=

∂

∂s
(f · t) (6)

[u] = 0, ν

[
∂u
∂n

]
= − (f · t) t . (7)

2

The equations of motion are completed by setting the velocity of the Lagrangian markers on Γ to
the fluid velocity

d

dt
X(α, t) = u(X(α, t), t) (8)

As in [3] we compare the NSE velocity and pressure with those of the Stokes equations

∇ps = ν∇2us + F + G , ∇ · us = 0 . (9)

In the velocity decomposition method of [3], we write the NSE velocity u as the sum of the Stokes
velocity and a remainder ur, and similarly for the pressure,

u = us + ur , p = ps + pr . (10)

The jump conditions for us, ps are the same as in (6,7) essentially because the velocity, and
therefore its material derivative, are continuous across Γ ([19]). Thus the remainder variables ur,
pr are more regular than u, p. Subtracting (9) from (1), we get equations for ur, pr resembling
NSE,

∂ur
∂t

+ u · ∇ur +∇pr = ν∇2ur + Fb (11)

∇ · ur = 0, (12)

where Fb is minus the material derivative of the Stokes velocity,

Fb = −∂us
∂t
− u · ∇us (13)

and is also continuous at Γ. This formulation has the advantage that the two problems can be
solved separately, with a choice of methods for each. In [3] we solve the Stokes problem with the
IIM [17] and the remainder problem using the semi-Lagrangian method [6, 34], which preserves
the material derivatives.

The method of [3] was second order accurate in space and time with explicit time steps for the
interface. In the present paper we develop a similar method, second order in space and first order
in time, with partially implicit time steps for the interface. Second order accuracy in time can be
achieved by extrapolation. In Sec. 2 we outline the complete method and explain the treatment
of the fluid variables. In Sec. 3 we begin with a first order accurate time discretization with a
backward Euler step in place of (8). Since the new interface is unknown, we derive an approximation
in which a primary contribution is the update of the interfacial force resulting from the change
in the interface. In Sec. 4 we write the force update by using a singular integral representation
and approximating the most singular contribution. This contribution is computed in the discrete
Fourier transform on the interface. This procedure is motivated by the small scale decomposition
method of [8]. A similar procedure was used in [10], for an elastic interface in Navier-Stokes flow
with force of the form (4), but the context and derivation here are different. In [10] the flow was
computed using the IBM and the interface was represented by tangent angle and arclength, as in
[8].

In Sec. 5 we present numerical results. We verify convergence, test the validity of the partially
implicit approximation, and estimate time steps with the force (4). We illustrate the application
to a nonlinear force, as in [23, 4]. We also present examples with a bending force which can be
compared with calculations of inextensible vesicles [12, 11, 33]. Brief conclusions are given in Sec.
6.

3

2. Summary of the method

We outline the method with first-order time discretization but with the equations exact in the
spatial variables. The modification to second order in time is discussed later. At time n we assume
that the quantities uns , unr , Xn, usnB, and fn are known. Here uns , unr are the Stokes and regular
velocity fields at time n, Xn is the current interface position, as a function of the Lagrangian
coordinate, usnB is the restriction of uns to the interface, and fn is the force density on the interface
Γn determined by Xn. With time step ∆t = τ , we advance to time n+ 1 in three steps:

(1) Update X to Xn+1 using an interface velocity u∗B, discretizing (8) as

Xn+1 −Xn

τ
= u∗B (14)

As derived in the next two sections, u∗B is obtained from usnB and unr by a modification in the high
wave numbers to approximate the velocity at time n+ 1. Compute the force fn+1 determined by
Xn+1.

(2) Solve for the new Stokes velocity un+1
s ,

∇pn+1
s = ν∇2un+1

s + Fn+1 , ∇ · un+1
s = 0 (15)

where Fn+1 = fn+1δΓn+1 .
(3) Solve for the new regular velocity un+1

r discretizing (11,12) with the viscosity implicit and
the material derivatives formed with velocity values at time n along backward characteristics,

un+1
r − Tunr

τ
+ ∇pn+1

r = ν∇2un+1
r − un+1

s − Tuns
τ

, ∇ · un+1
r = 0 (16)

Here Tunr (x) = unr (x̃), where x̃ is the location reached at time n by traveling backwards in time
with velocity u, starting at time n+ 1 at x; this earlier location x̃ is often called the “departure
point”.

For the solution of the Stokes problem in (2), it is natural to use the IIM, as applied to Stokes
flow in [17], and this was done in [3]. In the present work, as in [14], we use the boundary
integral representation of the free space Stokes pressure and velocity (e.g., see [28]). We first
compute the values at grid points near the interface, written as nearly singular integrals. We
compute the integrals using the method of [2] as applied to Stokes flow in [5]. We regularize the
singularity, calculate a value with a standard quadrature, and then add an analytical correction for
the regularization. With these values at nearby grid points, we form a discrete Laplacian and invert
to obtain the pressure and velocity at all grid points; this procedure was suggested in [21] and used
in [2]. The periodic boundary conditions are incorporated in the discrete Poisson problem. This
method for solving the Stokes equations in the fluid domain was described in detail in [14].

In solving (3) we use the semi-Lagrangian method [6, 34], as was done in [3], but the first order
version (16) is simpler than the BDF2 version used before. Starting with a grid point x for time
n+ 1, we approximate the departure point x̃ by

x∗ = x− (τ/2)un(x) , x̃ = x0 − τun(x∗) (17)

We have to interpolate un in the second equation, and we have to interpolate uns and unr to x̃ in
(16). Since us has discontinuous gradient at Γ, we extrapolate grid values across Γ to find uns (x̃).
We then solve for un+1

r using the projection method. We rewrite (16) as

un+1
r − τν∇2un+1

r = −τ∇pn+1
r + Tunr − un+1

s + Tuns (18)

4

and apply the projection P onto divergence free vector fields,

P = I −∇(∇2)−1∇· (19)

resulting in the equation

un+1
r − τν∇2un+1

r = P
(
Tunr − un+1

s + Tuns
)
. (20)

Finally, with
R = (I − τν∇2)−1 (21)

we have
un+1
r = RP

(
Tunr − un+1

s + Tuns
)
. (22)

It is important here that R and P commute with each other and with ∇2 with periodic boundary
conditions. We replace R and P with grid operators based on the usual second order differences
for ∇ and ∇2 and perform the operations with the Fourier transform. The discrete projection is
approximate rather than exact. In [3] the pressure was treated slightly differently.

Finally we describe the modification for second order accuracy in time. In (3) we use the BDF2
discretization of (11,12) as in [3], Sec. 2.2, rather than (16). Because we do not know a second
order version of the derivation in Secs. 3 and 4 for partially implicit update of the interface position
X, we use extrapolation with respect to time. We set

Xn+1 = 2S(Xn,un, τ) − S(Xn−1,un−1, 2τ) (23)

where S represents the update for X from time n with step τ or from time n − 1 with step 2τ ,
using the method already outlined, with the BDF2 version of ur.

3. Approximating the backward Euler step

We begin with the problem discrete in time, exact in space, and implicit in Xn+1. We will
approximate the new velocity un+1 on Γn+1 to obtain u∗B mentioned earlier. The implicit equations
are

Xn+1 = Xn + τun+1(Xn+1) , (24)

un+1 − Tun + τ∇pn+1 = τν∇2un+1 + τFn+1 , ∇ · un+1 = 0 (25)

where Fn+1 is the force determined by Xn+1 . We suppose G = 0 for simplicity. Our task is
to replace the right side of (24) with a quantity which can be computed at time n. It will be
important that for each material location α on the interface, and any function w(x),

(Tw)(Xn+1(α)) = w(Xn(α)) (26)

As before we can write un = uns + unr , each with divergence zero. As in (18)-(22) we apply the
projection P and then the Poisson solver R to (25) to obtain

un+1 = τRPFn+1 +RPTun (27)

Also for the Stokes part we will use the projection of (9) at time n,

0 = τν∇2uns + τPFn (28)

5

Note that R(τν∇2) = R− I and therefore

R(τν∇2uns) = Runs − uns (29)

and thus from (28)
τRPFn = −R(τν∇2uns) = uns −Runs (30)

Now we subtract and add τT(RPFn) to equation (27) for un+1, using T applied to equation (30):

un+1 = τRPFn+1 − τT(RPFn) + Tuns − T(Runs) +RPTuns +RPTunr (31)

We have substituted un = unr + uns in the last term in (27) so that in (31) the last two terms with
uns appear to be a commutator. Now add and subtract T(Runr),

un+1 = τRPFn+1 − τT(RPFn) + Tuns + T(Runr)
− T(Runs) +RPTuns +RPTunr − T(Runr) (32)

and combine the terms with uns and unr at the end:

un+1 = τRPFn+1 − τT(RPFn) + Tuns + T(Runr) +RPTun − T(Run) (33)

We need to use this at Xn+1, the location of the new interface. Using (26) we simplify most of
the terms in (33) to obtain

un+1(Xn+1) = τRPFn+1(Xn+1)− τRPFn(Xn) + uns (Xn) +Runr (Xn)

+ [RPTun − T(Run)] (Xn+1) (34)

So far we have an exact equation. We will make two approximations for use in (24). Since
Run = RPun, the last term in (34) is a commutator of T and RP applied to un. For a velocity
with bounded gradient, it is no larger than O(τ) since (T − I)un = O(τ). As a contribution to
the truncation error in (24), we can neglect this O(τ) term in the velocity in (24) while deriving a
first-order method. (Of course we should expect the error to grow as 1/ν and the force coefficients
become large.) The velocity expression is now reduced to

un+1(Xn+1) ≈ τ(RPFn+1)(Xn+1)− τ(RPFn)(Xn) + ũn(Xn) (35)

where we have set
ũn = uns +Runr (36)

The terms RPFn+1 and RPFn can be written as integrals on the interface whose kernel is the
fundamental solution of the “modified Stokes operator”. For the exact solution, each term is
actually O(τ−1/2) on the interface; since Fn+1 − Fn = O(τ), the term appearing in the velocity is
O(τ · τ · τ−1/2) = O(τ3/2). Thus it is negligible in the truncation error in (24). This suggests that
we can replace it by our guess of its most important part without losing first order accuracy. We
do this in order to gain stability. In the next section we will derive an approximation

τRPFn+1(Xn+1)− τRPFn(Xn) ≈ A(Xn+1 −Xn) (37)

where A is a linear operator. Then, combining (24) with (35)-(37) we get

Xn+1 −Xn = τA(Xn+1 −Xn) + τ ũn(Xn) (38)

and solving for Xn+1,
Xn+1 −Xn = τ(I − τA)−1ũn(Xn) ≡ τu∗B (39)

with the modified velocity written earlier in (14).

6

4. Approximating the stiff part of the force

To derive an expression of the form (37) we think of

v̇ ≡ τRPFn+1(Xn+1) − τRPFn(Xn) (40)

as a change or variation in the velocity due to the variation in interface position, Ẋ = Xn+1−Xn.
We approximate the changes with variational derivatives and derive simple formulas in the Fourier
transform on the interface by identifying the most singular part, as in [8, 10] and other work. We
will assume for now that the force exerted by the interface Γ has the form

F = fδΓ , f = ∂sΦ , Φ = E ′(sα)t (41)

The operator RP is given by a convolution with the fundamental solution. Although the
problem is in a periodic box, we can replace the operators with those for free space, since the
difference at the interface is smooth, and we are interested in approximating high wave numbers.
The free space fundamental solution consists of functions Kij , i, j = 1, 2, where Kij(x) is the ith
component of RP (δej), δ is the usual delta function in R2, and P and R are defined in (19),(21).

RP = (I − τν∆)−1(I −∇(∇2)−1∇·) (42)

The convolution of this fundamental solution with F results in an integral over Γ, so that v̇i as a
function of α, i = 1, 2, is

v̇i = τ

∫
Γn+1

∑
j

Kij(Xn+1(α)− y)fn+1
j (y) ds(y) − τ

∫
Γn

∑
j

Kij(Xn(α)− y)fnj (y) ds(y) (43)

We can rewrite each integral in Lagrangian coordinates, with y = X(α′) at time n + 1 or n. For
simplicity, we will replace Xn+1 inside K in the first term by Xn, for both α and α′, and similarly
for s′α in the change of variables. (That is, in the first term we use the old interface but the new
force; see [24] for comments about this replacement.) Thus, with Φ̇ = Φn+1 − Φn we get

v̇(α) ≈ τ

∫
K(Xn(α)−Xn(α′))∂sΦ̇(α′)snα′ dα′ (44)

or, after canceling two factors of sα′ ,

v̇(α) ≈ τ

∫
K(X(α)−X(α′))∂α′Φ̇(α′) dα′ (45)

We have omitted superscript n’s and indices i, j.
The change Φ̇ in Φ is determined by Ẋ = Xn+1 −Xn. We will need to write Ẋ in tangential

and normal components, denoted Ẋ1, Ẋ2

Ẋ = Ẋ1t + Ẋ2n (46)

as functions of α, where t,n are the unit tangent and normal vectors at Xn(α). Varying Φ(α) =
E ′(sα)t, we have

Φ̇ ≈ E ′′(sα)ṡαt + E ′(sα)ṫ .

7

From s2
α = Xα ·Xα, we get ṡαsα ≈ Ẋα ·Xα, so that ṡα ≈ Ẋα · t = ∂α(Ẋ · t)− Ẋ · ∂αt or

ṡα ≈ ∂αẊ1 − sακẊ2 (47)

where κ is the curvature, defined by ts = κn. The variation ṫ must be normal, so that ṫ ≈
(s−1
α Ẋα · n)n and

ṫ ≈
(
s−1
α ∂αẊ2 + κẊ1

)
n (48)

(Further details are given e.g. in [1], p. 1284), We neglect the second terms in both (47,48) as less
important since they do not have α-derivatives on Ẋ. Thus we obtain

Φ̇(α) ≈ c1(α)(∂αẊ1)t + c2(α)(∂αẊ2)n , c1(α) = E ′′(sα) , c2(α) = s−1
α E ′(sα) (49)

To calculate (45) with α fixed, we can temporarily assume, because of the rotational invariance
of the problem, that the x1-axis is tangent to Γ at X(α) in the x = (x1, x2) plane. For our
approximation we need only be concerned with the singular part of the integrand. Since the
singular behavior is for α′ near α, we will replace X(α) −X(α′) in (45) by (sα(α − α′), 0), where
sα = sα(α) = |∂αX(α)|; the difference is much smoother than either term. We also replace K with
a localized version K(0), multiplying K with ψ(α − α′), where ψ(β) = 1 for β small and ψ = 0
outside a small interval about β = 0; the difference is again smooth. Thus we have

v̇ ≈ τ

∫
K(0)(sα(α− α′))∂α′Φ̇(X(α′)) dα′ (50)

We use the Fourier transform ofK, first in two dimensions and then one. We write the transform
and its inverse for ϕ : R2 → R, as

ϕ̃(ξ) = (2π)−2

∫
R2

ϕ(x)e−ixξ dx , ϕ(x) =
∫

R2

ϕ̃(ξ)eixξ dξ (51)

Thus in R2 we have δ̃ = (2π)−2 and [(I − τν∆)−1δ]̃ (ξ) = (2π)−2(1 + τνξ2)−1. We set ξ = (k, `)
and ξ2 = k2 + `2, so that in the transform P11 multiplies by 1− k2/ξ2 = `2/ξ2 etc., and thus

K̃11 =
`2

4π2ξ2(1 + τνξ2)
, K̃22 =

k2

4π2ξ2(1 + τνξ2)
, K̃12 = − k`

4π2ξ2(1 + τνξ2)
(52)

and K̃21 = K̃12. Next we form the one-dimensional transform K̂ij of Kij as a function of x1 on
x2 = 0, with a similar definition; it results from integrating K̃ij in `. With λ2 = (τν)−1, we get
K̂12 = K̂21 = 0 and

K̂11(k) =
1

4π
λ2

√
k2 + λ2 + |k|

, K̂22(k) =
1

4π
λ2|k|√

k2 + λ2(
√
k2 + λ2 + |k|)

, (53)

These could also be derived from the formulas for Kij in terms of Bessel functions, as was done in
[10].

We are now ready to approximate the integral (50). Suppose −A ≤ α ≤ A; since Φ̇ is periodic
in α we can write

Φ̇(α′) =
∑
k

Φ̇ke
iπkα′/A , Φ̇k =

1
2A

∫ A

−A
Φ̇(α′)e−iπkα

′/A dα′ (54)

8

and similarly for Ẋ. Assuming Φ̇ is smooth, so that the series converges rapidly enough, we
substitute into (50) obtaining

v̇(α) = τ
∑
k

iπk

A
Φ̇k

∫ A

−A
K(0)(sα(α− α′))eiπkα′/A dα′ (55)

We set x1 = sα(α−α′) and change variables in the integral. We extend the integral to all x1, since
K(0) is local, and finally we replace K(0) by K; since the difference is smooth it contributes terms
rapidly decreasing in k. We now rewrite the integral in terms of K̂:

v̇(α) = τ
∑
k

iπk

Asα
Φ̇ke

iπkα/A

∫ ∞
−∞

K(x1, 0)e−i(πk/Asα)x1 dx1 (56)

v̇`(α) = 2πτ
∑
k

iπk

Asα
Φ̇k,`e

iπkα/AK̂``

(
πk

Asα

)
, ` = 1, 2 (57)

We set η = πk/(Asαλ) so that

K̂11

(
πk

Asα

)
=

λ

4π
1√

η2 + 1 + |η|
, K̂22

(
πk

Asα

)
=

λ

4π
|η|√

η2 + 1(
√
η2 + 1 + |η|)

(58)

and thus, since λ2τ = 1/ν,

v̇`(α) =
i

2ν

∑
k

eiπkα/Asgn(η) g`(η) Φ̇k,` , ` = 1, 2 (59)

where we define

g1(η) =
|η|√

η2 + 1 + |η|
, g2(η) =

η2√
η2 + 1(

√
η2 + 1 + |η|)

. (60)

From (49) we have Φ̇`(α′) = c`(sα)∂αẊ`(α′). Here sα is evaluated at α′, but we replace it with
the value at α in keeping with the local approximation. The corresponding relation in Fourier
coefficients is Φ̇k,` = c`(sα)(iπk/A)Ẋk,`. Combining with the above, we get

v̇`(α) = − 1
2ν
c`(sα)

∑
k

eiπkα/A
π|k|
A

g`(η) Ẋk,` , ` = 1, 2 (61)

So far we have considered α arbitrary but fixed with horizontal tangent at Xn(α). We now
consider α arbitrary and write Ẋ = Ẋ1t + Ẋ2n and similarly for v̇. The expressions (61) give v̇ in
the form v̇ = AẊ, as stated in (37), and we are ready to solve for Ẋ as in (38),(39). To calculate
the solution, we use the discrete Fourier transform, replacing the exact Fourier series above. With
−A ≤ α ≤ A, we discretize with α = jhB, −NB/2 + 1 ≤ j ≤ NB/2. The discrete transform of
Ẋ`(jhB), for ` = 1, 2, is Ẋk,`, with −NB/2 + 1 ≤ k ≤ NB/2,

Ẋ`(jhB) =
∑
k

Ẋk,` e
iπkjhB/A , Ẋk,` =

1
NB

∑
j

Ẋ`(jhB)e−iπkjhB/A (62)

9

and similarly for v̇, ũ. To discuss the approximate solution of (38) further we will consider specific
cases separately.

Linear tension force. For the familiar case Φ = T0(sα−1), we have E(σ) = T0(σ−1)2/2, and
we see from (49) that c1 = T0 and c2 = T0(1− s−1

α) in (61). The coefficient of Ẋk,` in (61) depends
on α as well as k. To simplify the equation to be solved, we can replace sα(α) in the definition of
η by min sα, so that now

η = c0k , c0 =
π

A(min sα)λ
(63)

The functions g1, g2 are increasing in η, so that replacing sα by its minimum has the effect
of magnifying the coefficient of Ẋk,`. Similarly in c2 we replace sα by the maximum. In the
resulting approximate version of equation (38) we can solve directly for Ẋk,` in terms of the Fourier
coefficients of ũ. For −NB/2 + 1 ≤ k ≤ NB/2 we set

m1(k) =
[
1 +

τT0

2ν

(π
A
|k|
)
g1(c0k)

]−1

(64)

m2(k) =
[
1 +

τT0

2ν

(
1− 1

(max sα)

)(π
A
|k|
)
g2(c0k)

]−1

(65)

Then combining (61) as modified with (38) and inverse transforming, we get

Ẋ`(jh) = τ

NB/2∑
k=−NB/2+1

m`(k)ũk,` eiπkjhB/A (66)

and finally Xn+1 −Xn = Ẋ1t + Ẋ2n. The replacement of sα by constants gives us the simplest
version of the approximate solution of (38). Such a procedure was used in [10], leading to formulas
similar to (64,65), and this version is used in our examples in Sec 5.

General tension force. For a general force as in (41) we can proceed as above with

m`(k) =
[
1 +

τ

2ν
c

(0)
`

(π
A
|k|
)
g`(c0k)

]−1
(67)

where c(0)
` is an upper bound for c`(α). For example, if E(σ) = γ0σ

2/2 + γ1σ
3/3, so that E ′(σ) =

γ0σ + γ1σ
2 then

c
(0)
1 = γ0 + 2γ1(max sα) , c

(0)
2 = γ0 + γ1(max sα) . (68)

Bending force. With a bending force we have, in place of (41), f = −cb∂
4
s X ≡ ∂sΦ, with

Φ = −cb∂3
sX or Φ = −cb∂2

st = −cbsα−1(∂α(sα−1∂αt)). In the variation of Φ, the most important
term (having the highest derivative) is −cbsα−2∂2

αṫ. With ṫ ≈ (sα−1∂αẊ2)n as before, we get
Φ̇ ≈ −cbsα−3∂3

α(Ẋ2)n in place of (49). From this we find Φ̇k,1 = 0, Φ̇k,2 = −cbsα−3(iπk)/A)3. In
place of (61) we get v̇1 = 0 and

v̇2 = − cb
2ν
sα
−3
∑
k

eiπkα/A
(
π|k|
A

)3

g2(η) Ẋk,2 . (69)

If we have only the bending force, then Ẋ is given by (66) with m1 = 1 and

m2(k) =
[
1 +

τcb
2ν

(min sα)−3
(π
A
|k|
)3
g2(c0k)

]−1

(70)

10

If the force is a sum of bending and elastic terms, e.g. f = γ0∂s ((sα − 1)t) − cb∂
4
s X, then m1 is

given by (64), and m2 has terms as in (65) and (70) added inside the brackets.

5. Numerical Results

We suppose the equations (1)–(8) have been nondimensionalized with length scale L, time scale
T and velocity U = L/T , so that if x′,t′,u′ are dimensional variables, then x = x′/L, t = t′/T ,
u = u′/U etc. The nondimensionalized viscosity coefficient is ν = ν ′/LU = 1/Re, with Re the
usual Reynolds number. If the tension force has the form (4), the nondimensional tension coefficient
γ0 is γ′0T

2/(ρ′L3), ρ′ being the density, and for a bending force as in (5) the bending coefficient is
cb = c′bT

2/(ρ′L5). Thus, for example, with the tension force (4), two problems reduce to the same
nondimensional equations if L(1) = L(2), T (1) = T (2)/λ, U (1) = λU (2), ν ′(1) = λν ′(2), and γ′0

(1) =
λ2γ′0

(2) for some constant λ. We can rescale a given problem so that γ0 is 1, changing the other
parameters. In our experiments with the force (4) we will consider the problem nondimensionalized
with L fixed and γ0 = 1, and vary the viscosity ν.

We use a square computational region 0 < x1, x2 < 1 and periodic boundary conditions. We
discretize x = (x1, x2) on a square grid with spacing h = 1/N and use NB markers on the interface,
equally spaced in the Lagrangian coordinate α. We always choose NB = 2N .

For our accuracy tests we use the familiar test problem in which the initial interface is an ellipse
stretched from its natural circular configuration, as in [4, 9, 10, 16, 17, 23, 24, 32]. Usually the
initial velocity is set to zero and the interface markers are equally spaced in the parameter θ as in
(71) below. If this is done, there is a nonzero initial tangential force due to the variation in ∂s/∂α,
and the initial velocity zero violates the jump condition (7). Thus the initial state is inconsistent
with the governing equations. The problem is meaningful, but an extra singularity is introduced.
For this reason, we prefer to use the Stokes velocity as the initial state in our accuracy tests.
(Another way to avoid this extra singularity would be to use initial velocity zero but space the
markers equally in arclength, so that ∂s/∂α is constant on the interface, leading to zero tangential
force. This was apparently done in [10].)

For our first tests we choose the initial curve as the ellipse parametrized by θ,

x1 = .5 + (1/3) cos θ , x2 = .5 + (1/4) sin θ . − π ≤ θ ≤ π (71)

We choose the unstretched configuration to be the circle of radius 1/5 and the material coordinate
to be α = θ/5 , |α| ≤ A = π/5. This choice is comparable to that in [23, 4]. We place the
initial interface markers equally spaced in θ and assume the initial pressure and velocity are those
determined by the Stokes equations. We assume a tension force of the form (4) with γ0 = 1.

If ν > .1, the ellipse relaxes toward the circle of the same area. For ν < .1, it undergoes
a damped oscillation before approaching the circle. We will say that a “half-cycle” is the first
time that the x1–intercept has a local minimum and the x2–intercept a local maximum. For
ν = .1, .05, .01, this time is .9, .45, .3. Fig. 1 shows the x1– and x2–intercepts as functions of time
with ν = .01. For comparison, Fig. 2 gives the intercepts with the initial velocity zero rather than
Stokes. Fig. 2 is similar to Fig. 8.5 in [16].

Stability. We compare three versions of the method: the code with first order partially implicit
time step, as described in Sec. 2; the second order partially implicit version as in (23); and a code
with second order explicit time steps of Adams-Bashforth type. All three are designed to be
second order in space. For brevity we refer to the three codes as “first order”, “second order”

11

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1 2 3 4 5 6

in
te

rc
ep

ts
 w

ith
 a

xe
s

time

Figure 1: x1-intercept (solid) and x2-intercept (dashed) for the ellipse initialized with Stokes velocity

Table 1: Largest observed stable values of ∆t/h

explicit first order second order
ν N =100 200 400 N =100 200 400 N =100 200 400
1 3 3 3 300 300 400 180 180 250
.1 .3 .3 .3 30 40 50 20 25 35

.01 .02 .04 .04 2.5 5 5 .5 1 2.5
.005 .003 .01 .015 .008 .07 .15 .005 .02 .12

and “explicit”. We first estimated experimentally the largest stable time step for the test problem
described above with various choices of ν. We performed 50 time steps and judged stability by the
absence of unphysical oscillations in the tangent to the interface or in the velocity at the interface.
(With too large a time step our method of interpolation near the interface often fails before these
oscillations appear.)

The results are shown in Table 1. Values of ∆t/h are shown. The maximum velocity that
occurs in the solution is the maximum initial Stokes velocity, about .04/ν. Thus the CFL condition
predicts ∆t/h = 25ν. The maximum ∆t/h is considerably larger than the CFL prediction, for the
first or second order implicit code, for ν ≥ .01. For ν = .005 it is worse for lower N , but almost
matches the CFL step in the highest resolution. It appears that for smaller ν, higher spatial
resolution is needed to run with the CFL time step. To test this hypothesis, we tried the second
order implicit code with ν = .001, N = 600, NB = 1200; it ran successfully for 50 time steps with
∆t/h = .025, the CFL velocity.

12

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0 1 2 3 4 5 6

in
te

rc
ep

ts
 w

ith
 a

xe
s

time

Figure 2: x1-intercept (solid) and x2-intercept (dashed) for the ellipse initialized with zero velocity

Validity of the partially implicit formula. To test the validity of the approximations made
in Secs. 3, 4 for the interface motion, we compared solutions calculated by the first and second
order partially implicit codes with a solution from the explicit code with small steps. For each test
we ran the implicit code twice, reducing ∆t in the second run by a factor of 2 and doubling the
number of time steps. The spatial resolution was fixed at N = 400, NB = 800. We chose ν = .1,
γ0 = 1 and final time .4. For the explicit code ∆t/h = .1, requiring 1600 time steps. We computed
relative errors in velocity and interface location, treating the explicit solution as exact, even though
it has O(∆t2) error. The relative error in velocity is ‖u∆t − uexpl‖/‖uexpl‖, or the same with ∆t
replaced by ∆t/2, where the norm is the discrete L2 norm on square grid points. The definition
for the interface position is similar, with L2 norms with respect to the material parameter on the
curve. We found empirical rates of convergence, also based on L2 norms. Thus for the velocity
field the rate is

p = log2 ‖u∆t − uexpl‖/‖u∆t/2 − uexpl‖ (72)

and similarly for the interface. Results are shown in Table 2. For each pair of runs we display the
larger of the two values of ∆t/h, the relative errors with the larger time step, and the empirical
rates of convergence. The errors and rates based on L∞ or maximum norm errors are similar. E.g.,
for the second order code with ∆t/h = .5 the relative errors in maximum norm for u1, u2, and X
are 1.5e-3, 1.7e-3, and 4.5e-5. The results for the first order code clearly show the expected O(∆t)
error. For the second order code, the order in ∆t increases with refinement well past first order.
It does not approach 2, probably because the two codes being compared each have O(∆t2) errors.
The rate deteriorates at the finest level, as should be expected. The rate of convergence of the

13

Table 2: Empirical rates of convergence to the explicit code as ∆t→ 0

first order second order
velocity interface velocity interface

∆t/h rel err rate rel err rate rel err rate rel err rate
2 1.91e-2 1.16 1.20e-2 1.15 5.58e-3 1.18 2.31e-3 1.13
1 8.56e-3 1.11 5.43e-3 1.12 2.46e-3 1.35 1.06e-3 1.34
.5 3.96e-3 1.07 2.50e-3 1.09 9.63e-4 1.43 4.17e-5 1.43

.25 1.89e-3 1.04 1.17e-3 1.07 3.58e-4 0.57 1.55e-5 -1.12

Table 3: Empirical convergence rates for the first order implicit scheme as h→ 0, ∆t fixed

smallest time final velocity interface
ν ∆t/h steps time L2 L∞ L2 L∞

.1 10 20 2 1.85 1.81 2.28 2.24
10 100 10 1.85 1.81 1.44 1.45
5 20 1 1.86 1.81 2.08 2.13
5 100 5 1.85 1.82 1.44 1.45

.05 5 20 1 1.85 1.80 2.04 2.05
5 100 5 1.85 1.81 1.32 1.34

2.5 20 .5 1.90 1.88 1.96 1.97
2.5 50 1.25 1.86 1.83 1.86 2.02
2.5 100 2.5 1.85 1.82 1.58 1.61

.01 1 25 .25 1.85 1.63 1.37 1.49
.5 25 .125 1.98 1.82 1.90 1.90
.5 100 .5 1.96 1.86 1.97 1.88

second order code is tested directly in Table 4 below.
Convergence. Next we test the order of spatial accuracy in the first order partially implicit

code; it is designed to be second order in space. With time step ∆t and number of time steps
fixed, we perform runs with N = 100, 200, 400. We then calculate an empirical order of accuracy,
as in [23], except that we do not interpolate; we compare values only on the coarsest grid for both
velocity field and interface position. Thus the order for the velocity field is

p = log2 ‖uh − uh/2‖/‖uh/2 − uh/4‖ , (73)

where the norm is on the coarsest grid, and similarly for the interface. In Table 3 the smallest
value of ∆t/h, the number of time steps, and the final time are displayed. (E.g. in the first line for
N = 100, 200, 400, ∆t/h = 10, 20, 40, resp.) Empirical convergence rates are given for the velocity
field and for the interface position, at the final time, in discrete L2 and L∞ norms. In the longer
runs with µ = .1 the relative errors in interface position are 10−5 to 4 · 10−5, even though the
order of accuracy deteriorates. In similar tests with N fixed and ∆t reduced we observe first order
convergence in time.

To assess temporal convergence we must note the unusual dependence of the error in semi-
Lagrangian methods on ∆t. With second order accuracy in space and time, the expected error
has the order h2 + (∆t)2 + hp/∆t, where p is the order of accuracy of the interpolation (see

14

Table 4: Empirical convergence rates for the second order implicit scheme, ∆t/h fixed

time final velocity interface
ν ∆t/h steps time L2 L∞ L2 L∞

1 50 10 5 1.34 1.41 1.35 1.34
5 10 .5 2.02 2.10 2.29 2.21
5 100 5 2.98 2.55 4.81 4.59

.1 10 10 1 2.27 2.24 1.82 1.80
5 10 .5 2.58 2.50 2.26 2.23
5 20 1 2.10 2.04 1.30 1.29

.05 5 10 .5 2.23 2.36 1.63 1.65
5 20 1 2.94 2.91 2.27 2.24
2 10 .2 1.46 .85 2.40 2.41
2 22 .44 3.90 3.15 3.24 3.33
1 10 .1 2.23 2.24 1.88 1.81
1 45 .45 .80 1.18 .71 1.01

.01 .25 10 .025 1.80 2.25 2.21 2.22
.25 50 .125 1.90 1.84 1.72 1.62
.25 100 .25 1.68 2.00 2.31 2.48

[6, 34]). Thus the error can actually get worse if ∆t is decreased with h fixed. Indeed, we see
this effect with our second order code. Instead we test accuracy by reducing ∆t and h with ∆t/h
constant. In Table 4 empirical orders of accuracy are found for the second order implicit code. We
take N = 100, 200, 400, with ∆t/h and the final time fixed. We compute the order of accuracy
according to (71) as before. The number of steps with N = 100 and the final time are displayed.
Rates are given for the velocity field and for the interface position, at the final time, in discrete L2

and L∞ norms. In some cases the time is chosen to correspond to the half-cycle mentioned above.
We see second order convergence with a small number of time steps, but with more steps the rate
is less predictable.

Nonlinear tension force. We performed calculations with the same test problem as above,
changing the force density to f = ∂s

(
(γ0sα + γ1s2

α)t
)
, similar to examples used in [23, 4]. We used

a partially implicit approximation as in (66)–(68). We take α to be the angle θ above and choose
ν = .01. In contrast to the earlier case, the interface buckles inward at the left and right and later
becomes convex again. The buckling is more pronounced if either γ0 or γ1 is increased. In Fig 3
we show the interface position at times 0, .25, .5, .75, 1 with γ0 = γ1 = 1. At time 1 the intercepts
have reached a local extreme. Afterwards the interface oscillates and approaches equilibrium in a
way similar to Fig. 1. In Fig. 4 we show the interface at time .25 for several choices of γ1, with
γ0 = 1. The partially implicit time step appeared to have a stabilizing effect but less so than for
the linear force.

Bending force. We compute examples of vesicles in Navier-Stokes flow with a bending force
(5) on the interface combined with a tension force of the form (4), that is

f = γ0∂s ((sα − 1)t)− cb∂
4
s X (74)

where γ0 and cb are constants. There have been careful numerical studies of inextensible vesicles
in Stokes flow; the inextensibility means that the interface cannot stretch or contract, so that

15

t = 0 t = .25 t = .5 t = .75 t = 1

Figure 3: The interface with γ0 = 1, γ1 = 1 at times t = 0, .25, .5, .75, 1.

γ1 = 0 γ1 = 1 γ1 = 5 γ1 = 10 γ1 = 20

Figure 4: The interface at time t = .25 with γ0 = 1 and γ1 = 0, 1, 5, 10, 20.

sα = ∂s/∂α ≡ 1. This constraint is imposed by the choice of a variable, unknown tension force
[27, 12, 29, 33]. Methods for inextensible vesicles in Navier-Stokes flow have also been introduced
[11, 20]. In [11] results were compared with those for Stokes flow in [12]. Here we do not impose
inextensibility but instead choose large constant γ0 in (74), with the expectation that the tension
term will keep sα near 1 and thus approximate the inextensible constraint. (This analogy was
suggested by M.-C. Lai.) We find behavior similar to that reported for the inextensible case.

We begin with a choice of physical parameters as in [11], Sec. 4.1, similar to that in [12], in
order to compare with the eariler work. We compute nondimensionalized solutions in a square
(−π, π) × (−π, π) with periodic boundary conditions. We choose time scale T = .1 sec as in [11].
Our typical initial state is an ellipse with semimajor axis 1 in nondimensional units, corresponding
to about L = 20µm. With scales T and L, the parameters in [11] lead to nondimensional bending
coefficient cb = 30 and viscosity ν = 250. We choose γ0 = 105 to 106 to keep sα near 1. In the
regime described, the flow is dominated by Stokes flow. We impose the shear velocity χ(sin y, 0),
where χ is the dimensionless shear rate in [11] and [12].

In the study of inextensible vesicles in 3D shear flow in [12] it was noted that, with shear flow
imposed, the vesicle approaches a state with a characteristic angle of inclination. The velocity on
the interface becomes nearly tangential, so that particles on the interface follow a “tanktreading”
motion, rotating with a frequency ω. The angle and ω/χ were found to depend significantly on the
reduced volume but much less on the shear rate χ. Subsequent studies have found quantitatively
similar results for 2D Stokes flow [33] and 2D Navier-Stokes flow [11]. In 2D we use the reduced
area A/(πR2

0) where R0 = L0/(2π), A is the area of the vesicle, and L0 is its perimeter. In our
experiments we chose the initial state as an ellipse with semimajor axis 1 and semiminor axis
b, with b = 1/4, 1/3, 2/5, 1/2, 2/3; the reduced area is determined by b. We tested shear rates

16

Table 5: Angle of inclination and frequency of a vesicle in shear flow

minor reduced angle/π frequency/χ
radius area χ = 1 10 50 100 χ = 1 10 50 100

1/4 .55 .11 .09 .09 .09 .19 .22 .21 .21
1/3 .66 .12 .11 .11 .11 .23 .27 .26 .26
2/5 .75 .14 .12 .12 .12 .26 .30 .30 .29
1/2 .84 .15 .14 .14 .13 .31 .31 .34 .33
2/3 .94 .18 .15 .16 .15 .37 .38 .38 .36

χ = 1, 10, 50, 100. After the interface velocity became close to tangential, we measured the angle
and the frequency ω = 2π/T0, where the period of rotation T0 was found as T0 =

∫
(vtan)−1 ds.

Values of the angle of inclination and ω/χ are shown in table 5. The results are generally consistent
with those in [12, 33, 11].

6. Conclusions

We have developed a numerical method for a moving elastic interface in Navier-Stokes flow
which is partially implicit in the sense that the time step (30) for the interface location uses a
modification of the current velocity in the high wavenumbers to predict the new interface. The
approximation is derived analytically in Sec. 4 using a procedure like that in [8, 10]. The partially
implicit time step is combined with the velocity decomposition method of [3]. The numerical tests
in Sec. 5 demonstrate that the new method is practical and accurate for a variety of problems with
tension and bending forces at the interface. The validity of the partially implicit approximation
was demonstrated and convergence was verified. The discontinuities in pressure and velocity gra-
dient are preserved in this method, as in the IIM, whereas they are regularized in the IBM. This
distinction between the two methods makes their performance difficult to compare, but both are
representative of widely used approaches for dealing with subgrid effects in difference methods for
continuum problems.

The primary method developed here is second order in space and first order in time. It can
be made second order in time by extrapolation. The partially implicit approximation allows the
time step to be much larger than for the corresponding explicit method, with negligible extra effort
per step. However, this method is far from being unconditionally stable. This is a consequence of
the analysis which deals only with the most significant terms contributing to stiffness and neglects
others. With the first order method it is easy to use adaptive time steps based on the CFL
condition. The second order method gains accuracy but has somewhat smaller time steps, though
still much larger than those of the explicit method.

The time step in this implementation appears in our experiments to be determined by the
CFL condition. This may be due to the manner of interpolation of the Stokes velocity, needed for
the semi-Lagrangian method, taking into account the jump in the velocity gradient. In principle
the stability could be improved, especially since the velocity decomposition offers flexibility in the
separate choices of methods for solving the Stokes problem and the remainder problem. With the
IBM, convection can be treated implicitly to overcome the CFL limitation [23], and presumably a
similar method could be used here for the remainder problem.

The derivation of the partially implicit time step applies to Navier-Stokes flow with a variety

17

of forces, including the bending force (5), which especially leads to stiffness because of the high
order derivative. The analysis is general enough to apply to other models. The combination of
bending and tension forces can mimic the case of an inextensible membrane, but our approach here
does not apply directly to the inextensible case. The approximation derived here could in principle
be used with other sharp interface methods not using the velocity decomposition. A promising
alternative would be to use an approximation such as the present one as a preconditioner in an
implicit method. Such a connection was made in the case of Stokes flow in [29, 33].

7. Acknowledgements

We thank Anita T. Layton for cooperation with this work and for numerous helpful comments.
We thank Ming-Chih Lai for suggesting the analogy between a large tension coefficient and the
inextensibility condition at a Workshop on Fluid-Structure Interaction Problems sponsored by the
National Center for Theoretical Sciences, Taiwan. This work was supported in part by the National
Science Foundation under Grant DMS–0806482.

References

[1] J. T. Beale, T. Y. Hou and J. S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away
from equilibrium, Comm. Pure Appl. Math. 46 (1993) 1269–1301.

[2] J. T. Beale and M.-C. Lai, A method for computing nearly singular integrals, SIAM J. Numer. Anal. 38 (2001),
1902–25.

[3] J. T. Beale and A. T. Layton, A velocity decomposition approach for moving interfaces in viscous fluids, J.
Comput. Phys. 228 (2009) 3358–67.

[4] H. D. Ceniceros, J. E. Fisher and A. M. Roma, Efficient solutions to robust, semi-implicit discretizations of the
immersed boundary method, J. Comput. Phys. 228 (2009) 7137–58.

[5] R. Cortez, The method of regularized Stokeslets, SIAM J. Sci. Comput. 23 (2001) 1204–1225.
[6] D. Durran, Numerical Methods for Fluid Dynamics with Application to Geophysics, Springer, New York, 2010.
[7] B. Griffith and C. S. Peskin, On the order of accuracy of the immersed boundary method: Higher order

convergence rates for sufficiently smooth problems, J Comput Phys. 208 (2005) 75–105.
[8] T. Y. Hou, J. S. Lowengrub and M. J. Shelley, Removing the stiffness from interfacial flows with surface tension,

J. Comput. Phys. 114 (1994) 312–38.
[9] T. Y. Hou and Z. Shi, Removing the stiffness of elastic force from the immersed boundary method for the 2D

Stokes equations, J. Comput. Phys. 227 (2008) 9138–69.
[10] T. Y. Hou and Z. Shi, An efficient semi-implicit immersed boundary method for the Navier-Stokes equations,

J. Comput. Phys. 227 (2008) 8968–91.
[11] Y. Kim and M.-C. Lai, Simulating the dynamics of inextensible vesicles by the penalty immersed boundary

methd, J. Comput. Phys. 229 (2010) 4840–53.
[12] M. Kraus, W. Wintz, U. Seifert, and R. Lipowsky, Fluid vesicles in shear flow, Phys. Rev. Lett. 77 (1996)

3685–88.
[13] M. C. A. Kropinski, An efficient numerical method for studying interfacial motion in two-dimensional creeping

flows, J. Comput. Phys. 171 (2001) 479–508.
[14] A. T. Layton and J. T. Beale, A partially implicit hybrid method for computing interface motion in Stokes flow,

Discrete Contin. Dyn. Syst. Ser. B, to appear.
[15] D. V. Le, J. White, J. Peraire, K. M. Lim, and B. C. Khoo, An implicit immersed boundary method for

three-dimensional fluidmembrane interactions, J. Comput. Phys. 228 (2009) 8427–45.
[16] L. Lee and R. LeVeque, An immersed interface method for incompressible Navier-Stokes equations, SIAM J.

Sci. Comput. 25 (2003) 832–856.
[17] R. J. LeVeque and Z. Li, Immersed interface methods for Stokes flow with elastic boundaries or surface tension,

SIAM J. Sci. Comput. 18 (1997) 709–35.
[18] Z. Li and K. Ito, The Immersed Interface Method, SIAM, Philadelphia, 2006.
[19] Z. Li and M.-C. Lai, The immersed interface method for the Navier-Stokes equations with singular forces, J.

Comput. Phys. 171 (2001) 822–42.

18

[20] Z. Li and M.-C. Lai, New finite difference methods based on IIM for inextensible interfaces in incompressible
flows, East Asian J. Appl. Math. 1 (2011) 155–71.

[21] A. Mayo, Fast high order accurate solution of Laplace’s equation on irregular regions, SIAM J. Sci. Statist.
Comput. 6 (1985) 144–57.

[22] A. Mayo and C. Peskin, An implicit numerical method for fluid dynamics problems with immersed elastic
boundaries, Contemp. Math. 141 (1993), 261–77.

[23] Y. Mori and C. S. Peskin, Implicit second order immersed boundary nethods with boundary mass, Comput.
Methods Appl. Mech. Engin. 197 (2008) 2049–67.

[24] E. P. Newren, A. L. Fogelson, R. D. Guy and R. M. Kirby, Unconditionally stable discretizations of the immersed
boundary equations, J. Comput. Phys. 222 (2007) 702–19.

[25] C. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[26] C. Peskin and B. Printz, Improved volume conservation in the computation of flows with immersed elastic

boundaries, J. Comput. Phys. 105 (1993), 33–46.
[27] C. Pozrikidis, The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow, J. Fluid Mech.

216 (1990) 231–54.
[28] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge Univ. Press,

Cambridge, 1992.
[29] J. S. Sohn, Y.-H. Tseng, S. Li, A. Voigt and J. S. Lowengrub, Dynamics of multicomponent vesicles in a viscous

fluid, J. Comput. Phys. 229 (2010) 119–44.
[30] Z. Tan, D. V. Le, Z. Li, K. M. Lim, and B. C. Khoo, An immersed interface methd for solving incompressible

viscous flows with piecewise constant vorticity across a moving elastic membrane, J. Comput. Phys. 227 (2008)
9955–83.

[31] A.-K. Tornberg and M. J. Shelley, Simulating the dynamics and interactions of flexible fibers in Stokes flows, J.
Comput. Phys. 196 (2004) 8–40.

[32] C. Tu and C. S. Peskin, Stability and instability in the computation of flows with moving immersed boundaries:
a comparison of three methods, SIAM J. Sci. Statist. Comput. 13 (1992) 1361–76.

[33] S. K. Veerapaneni, D. Gueyffier, D. Zorin and G. Biros, A boundary integral method for simulating the dynamics
of inextensible vesicles suspended in a viscous fluid in 2D, J. Comput. Phys. 228 (2009) 2334–53.

[34] D. Xiu and G. Karniadakis, A semi-Lagrangian high-order method for Navier-Stokes equations, J. Comput.
Phys. 172 (2001), 658–84.

[35] S. Xu and Z. J. Wang, An immersed interface method for simulating the interaction of a fluid with moving
boundaries, J. Comput. Phys. 216 (2006) 454–93.

19

